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Joshua and Israel marched around Jericho seven times while seven 
priests blew seven trumpets before the walls came crashing down.
(Joshua 6:3-4)

Introduction

Where there is structure, the parts of the structure must function together 
with a degree of consistency and purpose. Specifically, I am thinking of 
dynamic systems in which there are action and reaction among the parts 
and their functions and also friction and resistance. Natural systems, 
such as the cells in our bodies, and man-made systems, such as a watch, 
are constructed in a hierarchic way so that the different parts in each 
level work together consistently—that is, each group performs a function 
to fulfill some purpose. Thus, the number of functions working together 
determines the structure through which materials or energy pass. The 
number of functions that can work together is determined by the consis-
tency of the interactions of these functions. Conversely, consistency 
among the functions depends on the number of interacting components; 
if there is a large number, the possibility of inconsistency is greater. How 
large should the number of functions be to fulfill a purpose? The answer 
given here has important implications for constructing both physical and 
social systems. The current paper shows with mathematics supported by 
examples that 7 to 8 seem to be the maximum number for any compo-
nent of a complex system.

A system consists of a structure, flows in the structure, functions or 
actions that the flows perform, and a purpose for the system to fulfill. 
There can be multiple flows, functions, and purposes served. For 
example, to survive the human body must perform a few interacting 
functions through its flows, such as circulating blood, breathing, 
digesting, reproducing, sending hormones, firing nerves, moving 
muscles, obtaining support from bones, and relying on integumentary 
parts (e.g., hairs, nails). The last two or three serve to support the func-
tions of the other organs and are fairly independent of them. 
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The functions themselves are a synthesis of lesser functions; diges-
tion involves chewing, tasting, swallowing, secreting chemicals, 
breaking down complex sugars into simple sugars and proteins into 
amino acids, and emulsifying fats, absorbing the nutrients of the food 
we eat, and excreting the waste. These sub-function themselves can 
each be broken down to lesser sub-functions. Thus, the structure of any 
system needs to be broken down hierarchically into modules to facili-
tate the flows in that system and their functions. Modularity is a general 
principle for managing complexity. By breaking down a complex 
system into discrete pieces—which can then communicate with one 
another only through standardized interfaces within a standardized 
architecture—one can eliminate what would otherwise be an unman-
ageable tangle of system-wide interconnections. 

The functions interact and depend on each other—each one of 
them is important for the maintenance and survival of the other 
functions. However, for a system or subsystem to survive, there cannot 
be an excessive number of functions. Such an idea is not new in the 
literature of technological design (Simon, 1962).1 The aforementioned 
theory is thought to have been operating as a law of nature from the 
beginning even if, as some claim (Baldwin and Clark, 1997), modu-
larity is becoming more important today because of the increased 
complexity of modern technology. We can apply the idea of modularity 
not only to technological design but also to social organizations. 

The structure of a system is designed to accommodate certain flows 
that pass through it. Subsystems of the system have different functions 
that interact, which lead to the fulfillment of the overall purpose. The 
functions must therefore work together (i.e., be interdependent and 
conjoint and give feedback) to achieve the purpose. When one or more 
functions are faulty, the purpose the system is designed to serve fails in 
different degrees. The functions can take place sequentially, conjointly, or 
in combination. When they are sequential, as in a relay race, there is no 
problem in being consistent (except perhaps in handing the baton). The 
important question to be examined in the current paper is how consis-
tently interdependent functions combine to achieve the desired purpose.

For the Nobel Laureate Herbert Simon,1 a complex system is: 

. . . one made up of a large number of parts that interact in a 
non-simple way. In such systems, the whole is more than the sum 
of the parts, at least in the important pragmatic sense that, given 
the properties of the parts and the laws of their interaction, it is not 
a trivial matter to infer the properties of the whole.
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Simon also says “complexity is both a matter of the sheer number 
of distinct parts the system comprises and of the nature of the 
interconnectedness among those parts.”

Looking at it differently, however, modularity has an even longer 
pedigree in the social sciences. We can think of the “obvious and simple 
system of natural liberty” in Adam Smith’s Wealth of Nations (1776), 
where he showed that a complex modern society with its social and 
economic institutions needs modular design to be more productive.2, 3

A hierarchy is one of two ways to structure a system that is 
composed of interrelated subsystems that are each hierarchic in turn. 
The other way to structure a system is as a network. In formal organi-
zations, the number of subordinates who report directly to a single 
boss is called his or her “span of control.” Analogously, the span of a 
system is the number of subsystems into which it is partitioned. Simon1 
says that a hierarchic system is flat at a given level if it has a wide span 
at that level. A diamond has a wide span at the crystal level but not at 
the next level down (i.e., the molecular level).

One important difference exists between physical and biological 
hierarchies, on the one hand, and social hierarchies, on the other. Most 
physical and biological hierarchies are described in spatial terms. We 
detect the organelles in a cell in the way we detect the raisins in a 
cake—they are “visibly” differentiated substructures localized spatially 
within the larger structure. In social hierarchies, one considers who 
interacts with whom, not who lives next to whom. The width of span 
in a hierarchic system is of concern in this paper.

We are not thinking of “dead” parts, such as the wires in circuits that 
conduct electricity to destinations. There can be millions of them. Also 
we are not thinking about collections of objects arranged in orderly ways 
to form a structure. We are thinking about objects that are dynamic and 
function together according to natural or manmade forces that act to 
fulfill a purpose. None of the parts can function well or at all without the 
presence of the others, as, for example, in the case of a car’s cylinders or 
a clock’s wheels, and within natural organisms (i.e., the parts or organ-
elles of a living cell that need one another to survive). In the case of 
organelles, interactions are not mechanically direct but rather act through 
chemistry and a medium, the cytoplasm. The organs of our body use the 
circulatory system and the blood supported by the materials they produce 
to help nurture each other and the rest of the body. They all work 
together and influence each other—they are interdependent in performing 
their function. The effect on the organism may take a longer time to 
manifest these influences, good or bad; their influence may take a shorter 
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time to be felt and noticed. If we stop breathing, it can be the end of us 
because of the lack of oxygen as the heart stops pumping blood to the 
brain and other organs. 

Underlying this interdependence and feedback is the degree of 
consistency or harmony in the interaction of the functions. Consistency 
in the workings of the parts of the system determines the degree of 
stability of the system. Inconsistency can lead to instability and to the 
system faltering and ceasing to function. Inconsistency varies in inten-
sity from extremely inconsistent, to randomly inconsistent, to moder-
ately inconsistent, and, finally, to perfectly consistent. There can be 
measurements associated with the degree of inconsistency with which 
any system of multiple parts and functions is operating. It is possible 
that there could also be underlying simple laws of form, which a 
rational mind might apprehend to explain complexity.

The philosopher, Arthur Schopenhauer said, “Every truth is the refer-
ence of a judgment to something outside it, and intrinsic truth is a contra-
diction.” Since there are no absolutes, comparisons must be used, which 
inevitably lead to judgments and the possibility of inconsistency because 
of the subjectivity and variability of judgments. When we deal with 
intangible factors, which by definition have no scales of measurement, 
we can compare them in pairs according to the dominance of one over 
another with respect to a common property. We can not only determine 
the preferred object but also discriminate among intensities of prefer-
ence. When we compare functions, each working in its own domain, we 
can compare how well a function is doing with how well it was doing 
before. The common property in such a comparison is how well it fulfills 
its purpose. But when we compare two functions, what is the common 
property? They may have very different purposes. The common property 
needs to be, as also affirmed by Simon, some emergent entity that comes 
from their interaction, “contributing to maintaining synchronous 
timing?” for example. Another possibility to compare functions pairwise 
within a given hierarchical level could be: “With respect to the higher 
purpose (a node/function in the above higher level) which function better 
defines, and to what extent, this higher purpose?”

Why Consistency is Essential for the Workings of any System

The Oxford English dictionary defines inconsistency as a “want of 
agreement or harmony between two things or different parts of the 
same thing.” Webster’s dictionary defines consistency as “agreement or 
harmony in parts or of different things.” This definition is the common-
sense view of consistency, but there is also a mathematical version of 
consistency derived by considering the elements of the system in pairs. 

Saaty_final.indd   338 1/24/17   12:30 PM



seven is the magic number in nature 339

Consistency forms the basis of causal thinking, but it also applies to the 
workings of things, as the dictionary says. The insightful Julian Huxley4 
wrote that “something like the human mind might exist even in lifeless 
matter.” Herms Romijn5 has published a substantial paper in which he 
argues persuasively that photons have consciousness. The article 
suggests that photons carry subjectivity or consciousness as a given 
property, which is possible in principle because irreducible properties 
(nothing is smaller than a photon) are present at this level. He argues 
that it is more reasonable than the current approach, which suggests 
that the new property of consciousness can be produced by banging 
together previously unconscious bits of matter.

It is with the consistent interaction of functions that the purpose is 
fulfilled. If the functions are inconsistent, the purpose is less perfectly 
satisfied. The question is: What should the number of functions be, and 
what level of inconsistency can the purpose tolerate before it begins to 
show signs of deterioration?

To be consistent is not to lead to contradictions. This definition is 
independent of time. When a system is dynamic and depends on time, 
the foregoing definition of consistency involves time in a different 
manner. Is there consistency or harmony among the parts of the system 
so they continue to work together? How bad can inconsistency be? If 
we are close to consistency, we expect that the system will continue to 
function well. That closeness to consistency is sufficient because no 
system is perfectly consistent. 

To say that A is twice as heavy as B and B is 3 times as heavy as C and 
conclude that A is 6 times heavier than C is a consistent way of thinking. 
If one were to conclude that A is 5 times as heavy as C, one would think it 
is not as wrong as saying A is 100 times as heavy as C. Consistency in 
language means that reasoning does not lead to contradictory outcomes, 
and this example is a mathematical way to express that idea.

More about Consistency and Inconsistency in Science, 
Mathematics, and Engineering

The idea of consistency, with some exceptions, is not used much in 
philosophy or mathematics. One speaks of the consistency of a set of 
axioms in that they do not produce contradictory results. When a set of 
equations are all satisfied by at least one set of values for the variables, 
they are said to be consistent. If they are not all satisfied by any one set 
of values for the variables, they are said to be inconsistent. We also 
assume that the real world is consistent, and it is our job to describe it 
in a consistent way. But even in physics, it does not always happen; the 

Saaty_final.indd   339 1/24/17   12:30 PM



340 thomas saaty

theory of relativity and quantum theory have not been reconciled in a 
consistent way.

When we say that the cylinder of an engine is inconsistent in its 
function with its intended design, we mean that one cylinder is not 
functioning as closely to its design as other cylinders may be. If we 
compare the relative inconsistency of these cylinders with the intended 
design, we would say that this cylinder behaves “equally as well,” “a 
little better,” or “strongly better” than the other. In the end, we can 
obtain a measure of the priorities of the cylinders according to their 
consistency with their design.

This example can be generalized to any system, and we can use the 
same measure of consistency. We note that it is easier to compare the 
cylinders among themselves for the degree of consistency because we 
can observe them. This approach is clearer than comparing each with 
the design ideal that it is assumed to fulfill, since one may have little 
information about the design and its implementation. By comparing 
the cylinders with one another, despite their inconsistent functioning, 
we can seek better performance of the system of cylinders. It is clear 
that the more consistent cylinders tend to compensate for the inconsis-
tency of the less consistent ones. This kind of interdependence is what 
we are referring to. In addition, many inconsistent cylinders can cause 
the good cylinders to become less consistent in their attempt to improve 
performance. It should now be clear that if the number of cylinders is 
large and many of them are inconsistent, the compensation of the other 
cylinders becomes less sensitive, and the system now gradually slows 
down in attaining its purpose, which is the reasoning behind the 
measurement of inconsistency. Of course, the number of cylinders can 
also be small but inconsistent. However in this case, one can identify 
the most inconsistent cylinder and attempt to repair it. Many inconsis-
tent cylinders cause “overcompensation” by the consistent cylinders, 
which can wear out/decrease performance.

The same ideas apply in social situations. The members of a jury 
can be considered to reason with the facts. However, some of them are 
better at drawing conclusions of “guilty” or “not guilty” from these 
facts. When we compare them, we find that some jurors seem to be 
more inconsistent than others. A large number of jurors prevents us 
from determining which of the jurors are inconsistent in their treat-
ment of the facts. In biology, the internal organs of the body depend on 
each other’s functioning for their survival; the more organs there are, 
the more difficult it becomes for them to compensate for inconsistency 
in other organs. If they compensate strongly, the system will become 
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dysfunctional because they respond only with their own chemistry and 
material to balance the system. 

Let us now examine in greater depth the idea of consistency and 
inconsistency in our minds. Because inconsistency also occurs in nature 
according to the definition given earlier, the ideas developed below can 
also be generalized to inconsistency in nature. A good example of 
inconsistency, in the world of sports, is that team A beats team B, team 
B beats team C, but team C beats team A. Here, inconsistency is a 
natural occurrence and not a mental aberration. It is surprising that we 
create axioms for economics that preclude such intransitivity, which 
abounds in people’s expression of many different kinds of preference. It 
is easy to identify inconsistency in simple situations such as the one 
noted above: if A is 3 times more important than B and B is 2 times 
more important than C, then A should be 6 times more important than 
C, not 5 times. Here, the logical approach works well, but if there are 
many things to compare, it becomes difficult to be perfectly consistent 
in making judgments. Thus how many elements there are influences 
tracking the consistency of the system, whether in our mind’s thinking 
or in physical systems of the natural world.

To emphasize the point, interacting with consistency means to 
work together in harmony, agreement, or concord to fulfill a purpose. 
There is a cogent, logical, and mathematical reason to decompose any 
complex system with interactive parts. The clearest way to deconstruct 
the system is in a hierarchical fashion, breaking it down into small 
groups or levels of homogeneous parts.6 These parts must be “similar,” 
or more precisely be of the same “order of magnitude,” to work 
together consistently.

Hierarchic Decomposition of a System: The Role of 
Modularity to Allow Different Flows to Serve Different 
Functions

Simon1 introduces the topic of evolution of a complex system with a 
parable. There once were two watchmakers named Hora and Tempus 
who manufactured very fine watches. Both of them were highly 
regarded, and the phones in their workshops rang frequently; new 
customers were constantly calling. However, Hora prospered whereas 
Tempus became poorer and poorer and finally lost his shop. What was 
the reason? The watches the men made consisted of about 1,000 parts 
each. Tempus had constructed his so that if he had one partly assembled 
and had to put it down (to answer the phone, for example) it immedi-
ately fell to pieces and had to be rebuilt. The more the customers liked 
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his watches, the more they phoned him. Therefore, it became difficult 
for him to find enough uninterrupted time to finish a watch.

The watches that Hora made were no less complex than those of 
Tempus. But he had designed them so that he could put together 
subassemblies of about 10 elements each. Ten of these subassemblies, 
again, could be put together into a larger subassembly; and a system of 
10 of the latter subassemblies constituted the whole watch. Hence, 
when Hora had to put down a partly assembled watch to answer the 
phone, he lost only a small part of his work and he assembled his 
watches in only a fraction of the man-hours it took Tempus.

It is rather easy to make a quantitative analysis of the relative diffi-
culty of the tasks of Tempus and Hora. In the end, however, what 
makes Tempus’s unfinished watches so unstable is not the sheer number 
of distinct parts involved; Rather, it is the interdependency among the 
parts in his design that cause the watches to fall apart. In a 
non-decomposable system, the successful operation of any given part is 
likely to depend on the characteristics of many other parts throughout 
the system. So when such a system is missing parts (because it is not 
finished, for example, or because some of the parts are damaged), the 
whole ceases to function. 

By contrast, in a decomposable system, the proper working of a 
given part will depend highly on the characteristics and consistency of 
other parts within its subassembly—but it will also depend on the 
characteristics and consistency of parts outside of that subassembly. As 
a result, a decomposable system may be able to limp along even if some 
subsystems are damaged or incomplete. In organizational and social 
systems—and even in mechanical ones as well—it is possible to think 
of interdependence and interaction among the parts as a matter of 
information transmission or communication. The flows in the system 
are the means of communication, whether mental or physical, like 
opening a car door with a remote control. Communication of informa-
tion requires consistency with existing knowledge or, more abstractly, 
with the function of an existing structure. Consistency is the most 
important criterion in building information. The test for consistency is 
comparative. In fact, no absolute method for testing the consistency of 
a set of assumptions has ever been found. For a mathematical defini-
tion of consistency in a hierarchy see Saaty (2010).7

A good example of a decomposable system is the central nervous 
system made of nerve cells and their interactions. It is made up of the 
brain, the spinal cord, and the peripheral nervous system. The brain is 
made of three main parts: the forebrain, midbrain, and hindbrain (Figure 
1). The forebrain consists of the cerebrum (little brain), associated with 
higher brain function such as thought and action; the thalamus; and the 
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hypothalamus (part of the limbic system or “emotional brain”). The 
midbrain consists of the tectum and the tegmentum. The hindbrain is 
made of the cerebellum, pons, and medulla. Often, the midbrain, pons, 
and medulla are referred to together as the brainstem, which is respon-
sible for basic vital life functions such as breathing, heartbeat, and blood 
pressure. The spinal cord is made of a bundle of nerves running up and 
down the spine. The peripheral nervous system consists of the nerves and 
ganglia outside of the brain and spinal cord. Its function is to connect the 
central nervous system to the limbs and organs. It is divided into the 
somatic nervous system and the autonomic nervous system, including 
sensory systems. Most of the 12 cranial nerves are part of it. Figure 1 
shows that we have a complex hierarchic structure that again needs 
overall measurement of the consistency of its functions, which is 
developed later in the current paper.

How to Measure Inconsistency

What is known in the theory of measurement6 as the Fundamental 
Scale is used to make paired comparison judgments. This scale can be 
derived from the logarithmic stimulus-response function of Weber-
Fechner in psychophysics.7

In a less mathematical vein, we are able to distinguish between 
high, medium, and low at one level, and for each of them in a second 
level below, we also are able to distinguish between high, medium, and 

Figure 1. A simplified hierarchic model of the brain.
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low for each of the three giving us nine different categories. We assign 
the value 1 to (low, low), which is the smallest, and the value 9 to (high, 
high). Doing so allows us to cover the spectrum of possibilities between 
two elements and to give the value nine for the top of the paired 
comparisons scale compared with the lowest value on the scale (valida-
tion examples of this scale appear later). The mathematician and cogni-
tive neuropsychologist Stanislas Dehaene8 writes: “Introspection 
suggests that we can mentally represent the meaning of numbers 1 
through 9 with actual acuity. Indeed, these symbols seem equivalent to 
us. They all seem equally easy to work with, and we feel that we can 
add or compare any two digits in a small and fixed amount of time like 
a computer.” The fundamental scale in measurement theory comprises 
the numbers 1 to 9.

In making paired comparisons, numbers are assigned to pairs of 
elements using judgment about dominance. The elements being compared 
must be homogeneous, requiring no greater number than 9. An element 
compared with itself with respect to a certain criterion is always equal to 
1. Therefore, the main diagonal entries of the pairwise comparison 
matrix are all 1. The numbers 3, 5, 7, and 9 correspond to the verbal 
judgments “moderately more dominant,” “strongly more dominant,” 
“very strongly more dominant,” and “extremely more dominant,” with 
2, 4, 6, and 8 between the previous values. Reciprocal values are auto-
matically entered in the transpose position. We are permitted to interpo-
late values between the integers, if desired, or use numbers from an 
actual ratio scale of measurement. The decision-making theory known as 
the Analytic Hierarchy Process (AHP) uses the integers 1 to 9 as its 
Fundamental Scale of Absolute Numbers corresponding to the afore-
mentioned verbal statements for the comparisons. 

The ordinary way of measuring tangibles uses scales that have a 
unit to measure and assigns a number to each object one at a time. In 
the paired comparisons process, a number is assigned not to the objects 
but to the relation of dominance between two objects or functions at a 
time. A priority scale is then derived from all the dominance measure-
ments for the objects. In this manner, we are able to both derive priori-
ties for tangibles, and for intangibles for which there is no measurement. 
Although numbers obtained by using a scale are permanent and are 
always the same, priorities are only useful for the problem at hand (i.e., 
the group of objects being compared) and need not be the same for 

another problem with the members of the group changed. 
Let A = (aij ) be an n-by-n positive reciprocal matrix, so all aii = 1 

and aij = 1/aji , for all i, j 1,…,n. Let 1( ,..., )nw w w=  be the principal 
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right eigenvector of A,

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

which captures the priority of “domi-

nating” for each element in the group, and let 1( ,..., )nv v v= be the 

principal left eigenvector of A,

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

, which captures the priority of 

“being dominated.” Now if a dominance matrix is consistent, then one 
can write its entries as ratios of its priority vector entries so that

/ij i ja w w=  .

Because in practice A is usually inconsistent, we write 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

. Moreover,

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

, and 

substituting for ija , we have

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

. 

The computation:

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

reveals that

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

. Moreover, since 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

 for all x > 0, with 

equality if and only if x = 1, we see that 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

 if and only if all 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

, which is equivalent to having all /ij i ja w w= obtained when the 

judgments are consistent.

The priorities are obtained by raising the matrix to arbitrarily large 

powers to capture the transitivity of dominance along chains of arbi-

trarily large lengths.6 Let us now introduce a measure or index for incon-

sistency, or the deviation of

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

from n. We represent the consistency 

index by: 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

Thus

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

. 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

 if and only if A is consistent. What about the term 

“n-1” in the denominator? Because the elements on the main diagonal 

are each equal to 1, their sum is equal to n. If we denote the eigenvalues 

of A that are different from 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

by 

���
�

 

Because in practice A is usually inconsistent, we write . Moreover,

, and substituting for , we have .  

The computation: 

 

reveals that . Moreover, since  for all x > 0, with equality if and only if x = 1, 

we see that  if and only if all = 1, which is equivalent to having all obtained 

when the judgments are consistent. 

 The priorities are obtained by raising the matrix to arbitrarily large powers to capture the 

transitivity of dominance along chains of arbitrarily large lengths [13]. Let us now introduce a 

measure or index for inconsistency, or the deviation of from n. We represent the consistency 

index by:  

 Thus .  if and only if A is consistent. What about the term “n-1” in the 

denominator? Because the elements on the main diagonal are each equal to 1, their sum is equal to 

n. If we denote the eigenvalues of A that are different from  by , it is known that the 

sum of all the eigenvalues of A is equal to the sum of the elements down the main diagonal, which is 

, it is known that the sum of 

Saaty_final.indd   345 1/24/17   12:30 PM



346 thomas saaty

all the eigenvalues of A is equal to the sum of the elements down the 

main diagonal, which is equal to n in this case. We have 
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equal to n in this case. We have , so 
 
and  is the 

negative average of the non-principal eigenvalues of A. 

We said before that we need a large order matrix to improve the validity of our results by 

reproducing answers that correspond to the real underlying answer. The following section will 

attempt to determine how large the matrix should be. 

 

[H1]Validation[H1] 

To illustrate that this approach is not a number-crunching scheme but rather relates closely to the 

reality of actual measurement, consider a person who would like to estimate the relative area of 

the five geometric shapes given in Figure 2. It is an example of measurement with respect to a 

tangible criterion. For the purpose of this illustration, the relative area inside each shape obtained 

from actual measurement is also given. Of course, in real life situations, the relative areas would 

not be known to the person. He or she needs to estimate the relative sizes of the figures by 

comparing them in pairs. A pairwise comparison consists of identifying the figure with the 

smaller area of the two and estimating numerically how many times larger the area of the larger 

figure is than the area of the smaller one using the fundamental scale. The smaller figure is then 

assigned the reciprocal value when compared with the larger one. These comparisons are 

arranged in a five-by-five matrix as illustrated in Table 1. Conventionally, the item on the left 

side of the matrix is compared with that on top. If it is larger, the whole number corresponding to 

the judgment is put in that cell. If it is smaller, the reciprocal value is put in the cell.  
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average of the non-principal eigenvalues of A.

We said before that we need a large order matrix to improve the 

validity of our results by reproducing answers that correspond to the 

real underlying answer. The following section will attempt to determine 

how large the matrix should be.

Validation

To illustrate that this approach is not a number-crunching scheme but 
rather relates closely to the reality of actual measurement, consider a 
person who would like to estimate the relative area of the five geometric 
shapes given in Figure 2. It is an example of measurement with respect 
to a tangible criterion. For the purpose of this illustration, the relative 
area inside each shape obtained from actual measurement is also given. 
Of course, in real life situations, the relative areas would not be known 
to the person. He or she needs to estimate the relative sizes of the 
figures by comparing them in pairs. A pairwise comparison consists of 

Figure 2. Area example.
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identifying the figure with the smaller area of the two and estimating 
numerically how many times larger the area of the larger figure is than 
the area of the smaller one using the fundamental scale. The smaller 
figure is then assigned the reciprocal value when compared with the 
larger one. These comparisons are arranged in a five-by-five matrix as 
illustrated in Table 1. Conventionally, the item on the left side of the 
matrix is compared with that on top. If it is larger, the whole number 
corresponding to the judgment is put in that cell. If it is smaller, the 
reciprocal value is put in the cell. 

A second example is about estimating relative drink consumption 
in the United States. To make the comparisons, the types of drinks are 
listed on the left and at the top of Table 2, and judgment is made as to 
how strongly the consumption of a drink on the left dominates that 

Table 1. Matrix of judgments, outcomes, and actual relative sizes of the five geo-
metric shapes.

Table 2. Relative consumption of drinks.
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of a drink at the top. At the right of Table 2, it is apparent that the 
derived values and the actual values (obtained from various pages of 
Statistical Abstract of the United States) are close by nearly any 
measure of closeness.

The theory itself also provides us with a compatibility index 
between the derived and actual results without the need for statistical 
theory. We denote by ( )ix x=  and ( )jy y= , respectively, the derived 
and actual scale priorities, and by ( )ijc c=  the matrix of 

( / )( / )ij i j j ic x x y y=  of one matrix of ratios of the two scales and the 
transpose of the other matrix of ratios. We then sum all the elements of 
C and divide by n2 to obtain the Compatibility Index, a number that 
represents the deviation from perfect consistency of the two vectors. 
The index for the drinks example is 1.036. If the two vectors were 
identical, the index would be 1. The less compatible they are, the higher 
the value will be above 1.

Statistical Demonstration of the Leveling Off of 
Inconsistency as the Number of Elements Increases

As the number of elements becomes too large, we will show that the 
inconsistency levels off, and it becomes literally impossible to use it to 
diagnose the faulty elements. Computers can do the tedious work of 
double-checking logical proofs, even for very large order matrices. To 
get some feel for what the consistency index might be telling us about a 
positive n-by-n reciprocal matrix A , consider the following simulation: 
choose the entries of A  above the main diagonal at random from the 
17 values of the Fundamental Scale {1/9, 1/8,…,1, 2,…,8, 9}. Then fill 
in the entries of A  below the diagonal by taking reciprocals. Put 1’s 
down the main diagonal and compute the consistency index. Do this 
50,000 times and take the average, which is the random index. Table 3 
shows the values obtained from one set of such simulations and also 
their first and second order differences, for matrices of size 1, 2,…,15.

Since it would be pointless to try to discern any priority ranking 
from a set of random comparison judgments, we should be uncomfort-
able proceeding unless the consistency index of a pairwise comparison 

Table 3. Random index. 
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of C and divide by n2 to obtain the Compatibility Index, a number that represents the deviation from 

perfect consistency of the two vectors. The index for the drinks example is 1.036. If the two vectors 

were identical, the index would be 1. The less compatible they are, the higher the value will be 

above 1.  

 

[H1]Statistical Demonstration of the Leveling Off of Inconsistency as the Number of Elements 

Increases[H1] 

As the number of elements becomes too large, we will show that the inconsistency levels off, and it 

becomes literally impossible to use it to diagnose the faulty elements. Computers can do the tedious 

work of double-checking logical proofs, even for very large order matrices. To get some feel for 

what the consistency index might be telling us about a positive n-by-n reciprocal matrix , 

consider the following simulation: choose the entries of  above the main diagonal at random from 

the 17 values of the Fundamental Scale {1/9, 1/8,…,1, 2,…,8, 9}. Then fill in the entries of  

below the diagonal by taking reciprocals. Put 1’s down the main diagonal and compute the 

consistency index. Do this 50,000 times and take the average, which is the random index. Table 3 

shows the values obtained from one set of such simulations and also their first and second order 

differences, for matrices of size 1, 2,…,15. 

 Since it would be pointless to try to discern any priority ranking from a set of random 

comparison judgments, we should be uncomfortable proceeding unless the consistency index of a 

pairwise comparison matrix  is much smaller than the corresponding random index value in Table 

3. The consistency ratio (CR) of a pairwise comparison matrix is the ratio of its consistency index to 

the corresponding random index value (RI) in Table 3.  

 Figure 4 is the plot of RI and shows the importance of the number 7 when taking differences 

of the random values of Figure 3 as the graph levels off when the number of elements is around 7. 

The number 8 is a cutoff point beyond which the differences are less than 0.10. It follows that the 

CR is no longer meaningful when many more elements are being compared in the matrix because 

the differences are small (0.05 or less), meaning that the RI values in the second row of Table 3 get 

too close past n = 7 to provide useful information for the CR to be used determine the most 

inconsistent judgment. a
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��In addition, although the RI levels off as n increases beyond 8 (and the first order differences 
become negligible beyond n = 7), the matrix consistency index will most likely keep increasing 

is much smaller than the corresponding random index value 
in Table 3. The consistency ratio (CR) of a pairwise comparison matrix 
is the ratio of its consistency index to the corresponding random index 
value (RI) in Table 3. 

Figure 4 is the plot of RI and shows the importance of the number 
7 when taking differences of the random values of Figure 3 as the graph 
levels off when the number of elements is around 7. The number 8 is a 
cutoff point beyond which the differences are less than 0.10. It follows 
that the CR is no longer meaningful when many more elements are 
being compared in the matrix because the differences are small (0.05 or 
less), meaning that the RI values in the second row of Table 3 get too 
close past n = 7 to provide useful information for the CR to be used 
determine the most inconsistent judgment.a

a In addition, although the RI levels off as n increases beyond 8 (and the first order 
differences become negligible beyond n = 7), the matrix consistency index will most likely 
keep increasing beyond n = 7 (the more elements, the more difficult to be consistent), leading 

Figure 3. Plot of random index.

Figure 4. Plot of first order differences.
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The notion of “order of magnitude” is essential in any mathematical 
consideration of changes in measurement. For example, when one has 
a numerical value between 1 and 10 for some measurement and wants 
to determine whether change in this value is significant or not, the 
following line of reasoning can be used. A change of a whole integer 
value is critical because it changes the magnitude and identity of the 
original number significantly. If the change in value is a percent or less, 
it would be small (by two orders of magnitude) and thus would be 
considered negligible. However if this perturbation is a decimal (one 
order of magnitude smaller), we are likely to modify the original value 
by this decimal without losing the significance and identity of the orig-
inal number as we first understood it to be. Thus in synthesizing near 
consistent judgment values, changes that are too large can cause 
dramatic change in our understanding, and values that are too small 
cause no change in our understanding. We are left with only values of 
one order of magnitude smaller that we can deal with incrementally to 
change our understanding. It follows that our allowable CR should be 
no more than about 0.10. The requirement of 10% cannot be made 
smaller, such as 1% or 0.1%, without trivializing the impact of incon-
sistency. Assuming that all knowledge should be consistent contradicts 
the experience that requires continued updating of understanding. 

If the CR is larger than desired, we do three things: (1) find the most 
inconsistent judgment in the matrix (for example, the judgment for 
which
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happen that a judge’s knowledge does not permit one to improve his or 
her consistency, and more information is required to improve the 
consistency of judgments.

To see how large random inconsistency can get in using the Funda-
mental Scale, experiments were made with 3 x 3 up to 9 x 9 matrices 
with 9 and 1/9 alternating in each row and column, for matrices of 

to a more inconsistent system. In conclusion, beyond n = 7, it is not possible (at least from a 
practical point of view) to adjust any inconsistency, while at the same time it is also much 
easier to be inconsistent. 
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order 3, 5, 7, and 9 yielded the following respective results for λmax: 
10.1111, 19.2222, 28.3333, and 37.4444 rounded off to four decimal 
places. For successive odd powers of a matrix, one can see that λmax 

increased by the same amount 9.1111 from one matrix to the next.
The quality of response to stimuli is determined by three factors: 

accuracy or validity, consistency, and efficiency. Our judgment is much 
more sensitive and responsive to large perturbations. When we speak 
of perturbation, we are referring to numerically changing consistent 
ratios. Conversely, the smaller the inconsistency, the more difficult it is 
for us to know where best the changes should be made. Once near 
consistency is attained, it becomes uncertain which coefficients should 
be perturbed by small amounts to transform a near consistent matrix 
to a consistent one. 

Inconsistency and Perturbation of the Principal 
Eigenvector of Priorities

By using the inconsistency index for a pairwise comparison matrix, 
we have seen that the maximum numbers are 7 or 8. Now we use 
perturbations of the principal eigenvector w1 to show that a similar 
result is obtained.

We have two formulas for representing the perturbations; the first 
is thanks to Wilkinson9 for a general matrix, and the second for posi-
tive reciprocal matrices, which is easier to use.10

���
�

10.1111, 19.2222, 28.3333, and 37.4444 rounded off to four decimal places. For successive odd 

powers of a matrix, one can see that λmax increased by the same amount 9.1111 from one matrix 

to the next. 

 The quality of response to stimuli is determined by three factors: accuracy or validity, 

consistency, and efficiency. Our judgment is much more sensitive and responsive to large 

perturbations. When we speak of perturbation, we are referring to numerically changing consistent 

ratios. Conversely, the smaller the inconsistency, the more difficult it is for us to know where best 

the changes should be made. Once near consistency is attained, it becomes uncertain which 

coefficients should be perturbed by small amounts to transform a near consistent matrix to a 

consistent one.  

 

[H1] Inconsistency and Perturbation of the Principal Eigenvector of Priorities[H1] 

By using the inconsistency index for a pairwise comparison matrix, we have seen that the 

maximum numbers are 7 or 8. Now we use perturbations of the principal eigenvector w1 to show 

that a similar result is obtained. 

We have two formulas for representing the perturbations; the first is thanks to Wilkinson 

[20] for a general matrix, and the second for positive reciprocal matrices, which is easier to use, 

is attributed to Vargas [19]. [Query #: OK as edited?] 

  (1) 

  (2) 

In the first formula ,  represents the principal eigenvector (priority vector), and the 

other w’s represent the remaining right eigenvectors of matrix A, whereas the v’s represent the 

left eigenvectors of A and the ’s represent its eigenvalues. We use the first formula only to 

show that n must be small. We then use the second formula in a large number of simulations to 

show that the maximum value of n is 7 or 8 depending on how sensitive and responsive the 
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In the first formula, we note that the eigenvector (priority vector)  will be very 
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The i
T
i wv are interdependent in a way that precludes the possi-

bility that just one 1/ T
i iv w , i = 1,…,n is large. Thus if one of them is 

arbitrarily large, they are all arbitrarily large. However, we want them 
to be small, i.e., near 1. The eigenvector 1w  is stable when:

(1) The perturbation

���
�

separated from the other eigenvalues and none of the products  of left eigenvectors  and 

right eigenvectors  is small, the eigenvector w1 corresponding to the eigenvalue λ1 will be 

comparatively insensitive to perturbations in A.  

 The are interdependent in a way that precludes the possibility that just one , 

i = 1,…,n is large. Thus if one of them is arbitrarily large, they are all arbitrarily large. However, we 

want them to be small, i.e., near 1. The eigenvector  is stable when: 

(1) The perturbation  is small as the consistency index might suggest;  

(2)  is well separated from ; when A is consistent,  

(3) The product of left and right eigenvectors is not excessively large, which is the case 

for a consistent (and near-consistent) matrix if the elements are homogenous (compared 

here on the relative dominance scale of the Fundamental Scale) with respect to the 

criterion of comparison; and  

(4) If the number of their entries is small [16]. 

We note that n, the order of the matrix, should not be overly small because then one does 

not get enough information from the few comparison judgments to obtain valid results for real 

world measurement. To determine the magnitude of n, we need to examine the effect of random 

inconsistency on the order n of a positive reciprocal matrix A that would influence the number of 

terms in the sum defining . With large inconsistency one cannot guarantee that none of the 

components of w1 is arbitrarily small. Thus, near-consistency is a sufficient condition for 

stability. Note also that we need to keep the number of elements relatively small, so that the 

values of all the components are of the same order. The foregoing suggests that reciprocal 

matrices are the archetypical [Query #: OK as edited?] matrices, which produce stable 

eigenvectors on small perturbations of the consistent case. The conclusion is that n must be small 

but not too small, and one must compare homogeneous elements (homogeneity is one of the 

axioms of the AHP). 

Let us now turn to the second perturbation formula. It consists of the difference between 

the principal eigenvectors of the perturbed matrix and the original matrix. In the current paper, 

we use the “Matlab” software to simulate the second perturbation formula. Suppose the original 

is small as the consistency index might 
suggest;

(2) 
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(3) The product of left and right eigenvectors is not excessively large, 
which is the case for a consistent (and near-consistent) matrix if the 
elements are homogeneous (compared here on the relative domi-
nance scale of the Fundamental Scale) with respect to the criterion 
of comparison; and 

(4) If the number of their entries is small.1

We note that n, the order of the matrix, should not be overly small 
because then one does not get enough information from the few 
comparison judgments to obtain valid results for real world measure-
ment. To determine the magnitude of n, we need to examine the effect 
of random inconsistency on the order n of a positive reciprocal matrix 
A that would influence the number of terms in the sum defining 
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. 

Table 4. Perturbation and first order differences.
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With large inconsistency one cannot guarantee that none of the compo-
nents of w1 is arbitrarily small. Thus, near-consistency is a sufficient 
condition for stability. Note also that we need to keep the number of 
elements relatively small, so that the values of all the components are 
of the same order. The foregoing suggests that reciprocal matrices are 
the archetypical matrices, which produce stable eigenvectors on small 
perturbations of the consistent case. The conclusion is that n must be 
small but not too small, and one must compare homogeneous elements 
(homogeneity is one of the axioms of the AHP).

Let us now turn to the second perturbation formula. It consists of 
the difference between the principal eigenvectors of the perturbed 
matrix and the original matrix. In the current paper, we use the 

Figure 5. Plot of perturbations in second column of Table 4.

Figure 6. Plot of first order difference perturbations in the third column of Table 4.
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“Matlab” software to simulate the second perturbation formula. 
Suppose the original positive reciprocal matrix is
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positive reciprocal matrix is  and  is the perturbation matrix, both of which 

are produced by using random values from the Fundamental Scale. Then the calculations are as 

follows [13]: 

(1) Calculate the principal eigenvector w1 of A using the formula:

, where  is the (i, j) entry of the kth power of the matrix A;  

(2) Construct the perturbed matrix by , where the operation “ ” is the 

elementwise (Hadamard) product of the matrices A and P;  

(3) Calculate the principal eigenvector  of the perturbed matrix 

 

using the formula:

 
 , where  is the (i, j) entry of the kth power of the 

matrix ; 

(4) Calculate the perturbation vector of the principal eigenvector using the formula

;  

(5) Run the program 50,000 times for each size matrix from 2 to 15 to do (4)—thus 

calculate the perturbation of the principal eigenvector; 

(6) Compute the norm of each of these 50,000 perturbation vectors by taking the square 

root of the sums of the squares of its entries;  

(7) Add all of these 50,000 norms of the vectors and form the average value, which leads 

to Table 4 and Figures 5 and 6. 

 

Note the peak shown in Figure 6 in the value of the first order differences for seven 

elements.  

 

[H1] Consistency of a Hierarchical System and of a Network System[/H1] 

 

The current section moves from calculating the consistency of a single pairwise 

comparison matrix to calculating the consistency for a hierarchy and for a network. 

 

[H2]The Consistency of a Hierarchy[/H2] 
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(5) Run the program 50,000 times for each size matrix from 2 to 15 to 
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eigenvector;

(6) Compute the norm of each of these 50,000 perturbation vectors by 
taking the square root of the sums of the squares of its entries; 
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Note the peak shown in Figure 6 in the value of the first order 
differences for seven elements. 

Consistency of a Hierarchical System and of a Network System

The current section moves from calculating the consistency of a single 
pairwise comparison matrix to calculating the consistency for a hier-
archy and for a network.

The Consistency of a Hierarchy

The consistency of a hierarchically constructed system of many parts and 
subparts is obtained11 by first taking sums of products of each consistency 
index with the composite priority of its criterion. The ratio is then formed 
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from this number with the sums of the products of the random consis-
tency index for that order matrix with the composite priority of its 
criterion. In general, the ratio should be in the neighborhood of 0.10 to 
minimize concern for needed improvements in the judgments.

Let nj, j = 1, 2, ..., h be the number of elements in the jth level of the 
hierarchy. Let wij be the composite weight of the ith criterion of the jth 
level, and let μi,j+1 be the consistency index of all elements in the (j+1)st 
level compared with respect to the ith criterion of the jth level. The 

consistency index of a hierarchy is given by 

���
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want the limit priorities of the elements. We need to evaluate inconsistency by the weight of the 

, where 

wij = 1 for j = 1, and ni,j+1 is the number of elements of the (j+1)st level 
with respect to the ith criterion of the jth level.

The Inconsistency of a System

We want to represent both the inconsistency along paths beginning with a 
goal and the inconsistency in cycles. For paths, we want the initial priori-
ties of the elements. For cycles, we want the limit priorities of the elements. 
We need to evaluate inconsistency by the weight of the corresponding 
elements. Also, we need the influence priority of an element of a compo-
nent to compare elements in another component. In the end, we need to 
weight by the priorities KC of the supercriteria in the control hierarchy: 

 

where nj = j = 1,2,…,h is the number of elements in the jth level and μij+1 
is the consistency index of all elements in the (j+1)st level with respect 
to the ith criterion of the jth level. In the second term, w(k)(h) is the priority 
of the influence of the hth component on the kth component, and wjk is 
the limit priority of the jth element in the kth component. In the case of 
a hierarchy, there are no cycles and the second term is equal to zero. As 
in the measurement of consistency of a hierarchy, this index must be 
divided by the corresponding index with random inconsistencies.

In both hierarchies and networks, it can be shown that the incon-
sistency cannot be worse than that of the inconsistency of the most 
inconsistent subset whose functions are also pairwise compared.11

More Examples

Here are a few examples to illustrate the foregoing idea that 7 or 8 is a 
natural bound on the number of interacting elements imposed by the 
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need for consistency. Although examples are not a proof, still we present 
them here because it is interesting how often that bound comes up.

Number of Jurors

We begin with a social system example about people’s interdependent 
judgments. Useful observations about how many jurors is the best 
number has been extensively studied over the years by many people. 
Condorcet’s Jury Theorem12 says that a larger jury, on average, reaches a 
more accurate decision. However, Bag, Levine, and Spencer13 of the 
University of Surrey have shown that with a larger jury size, the proba-
bility of reaching a correct verdict may, in fact, decrease, contrary to the 
Condorcet Jury Theorem. They showed that if the jurors coordinate on 
any one of a number of (equally plausible) asymmetric equilibriums other 
than the symmetric equilibrium,14 the probability of accuracy reaches a 
maximum for a particular jury size and remains unchanged with larger 
juries. In referring to a part of their research and statistical findings, 
Nagel and Neef15 write:

. . . the most important aspect is the point at which the weighted 
sum of errors is least. This point is reached at a jury size some-
where between six and eight; the nearest whole number is seven. 
The model therefore predicts that a jury of seven members will 
minimize errors in the fashion we assume would be optimum. 
Subject to the limitations on the coin-flipping model . . . , we can 
refer to a seven-member jury as the optimum jury size for unani-
mous juries.

Stimulus-response Theory

This example is from psychology. G. A. Miller [9] wrote about the 
magic number 7 2± . He observed that in responding to successive 
stimuli, performance is nearly perfect up to 7 different stimuli but 
declines as the number of different stimuli is increased. He says that the 
memory span of young adults is approximately seven items. He also 
concluded that memory span is not limited in terms of bits but rather 
in terms of chunks. A chunk is the largest meaningful unit in the 
presented material that the person recognizes.

Maslow’s Human Needs

This example is also from psychology. The following 7 human needs 
were identified by Maslow17: the “Basic needs or Physiological needs” 
of a human being, “Safety and security needs,” “Love and Belonging” 
needs, “Esteem” level needs, “Cognitive” level needs, “Aesthetic” level 
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needs, and finally, at the top of the pyramid, the “Need for 
Self-actualization.” 

Music

The numbers 7 or 8 again play an important role in music in which 
octaves (Latin: octavus, or “eighth”) notes are grouped together. The 
octave relationship is a natural phenomenon that has been referred to as 
the “basic miracle of music,” the use of which is common in most 
musical systems. 

Computer Science

In computer science, we do not have more than 7 to 8 interacting 
component functions in spite of the complexity of today’s computers 
and network systems. For example in the Von Neumann architecture, 
according to functions we have: (1) input devices; (2) output devices; 
(3) the control unit; (4) the arithmetic unit, composing the central 
processing unit; and (5) the memory unit. Even when going into greater 
detail, the hardware of a personal computer is composed of a case, a 
power supply unit, the motherboard, expansion cards, peripheral 
devices, storage devices, and input/output devices. Similarly, microcom-
puter design includes the microprocessor, read and write memory 
(RAM), read only memory (ROM), Input/Output unit, address bus, 
data bus, and control bus (totaling 7 elements) in modern micro-com-
puter architecture.18 This does not mean that there are not millions of 
parts, but rather that they are  always hierarchically structured and 
grouped in no more than 7 or 8 interacting components. We have 
millions of bytes of data or segments in a hard disk; however, they are 
not interacting parts but rather parts of a whole, as are the billions 
of neurons in the brain. The same thing applies to networks where we 
can have thousands of interconnected devices, but they are not actually 
communicating altogether—they are used as intermediates in a hierar-
chical structure, even in the case of a fully connected network, as are 
mesh networks. The byte itself was designed as a unit of information, 
consisting of 8 binary digits (bits).

Biology

The next two examples are from biology. Animal cell functions and 
organelles are linked to each other for the overall behavior of the cell. 
The cell has the following organelles: Golgi Apparatus, Lysosomes, 
Mitochondria, Ribosomes, Endoplasmic Reticulum, Vacuole, and 
protein receptors to bring in needed material to and take waste out of 
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the cell. In Eukaryotic cells, all organelles are controlled by the centrally 
located Nucleus. As we said before, they communicate through the 
Cytoplasm. Plant cells also have Chloroplasts for making Chlorophyll. 

Our hierarchic body subsystems are also a good example of this prin-
ciple. We have the (1) Cardiovascular or Circulatory System; (2) Respira-
tory System; (3) Digestive System; (4) Endocrine System; (5) Reproductive 
System; (6) Nervous System; (7) Muscular System; (8) Skeletal System; 
and (9) Integumentary System (i.e., skin, hair, nails, sweat glands). The 
last three systems provide the framework for support and movement, and 
the brain acts as the controller. 

Mechanical Engineering

The next example is from mechanical engineering. John Newman of 
Vintage Emperor Clock Consultant, THE VILLAGE CLOCKSMITH, 
Old Prattville, Prattville, Alabama, answered the question: What is the 
maximum number of wheels in a manufactured clock or watch that 
keeps time only without chimes or strike? He answered that usually, 
there are 5 or 6 wheels included.

Biblical Example

Finally, 7 is a number of great significance in the Bible, as one reviewer 
of this paper learned in a recent trip to Israel. God created the world in 
6 days and rested the seventh day. God, being God, neither required 6 
days to create anything nor to rest afterward, but He may have wanted 
to give us a pattern; work days and a rest day are independent of each 
other. This 7-day pattern is so important that He explicitly commands 
in the Fourth Commandment: “Six Days you shall work, but on the 
seventh day you shall rest” (Exodus 34:21). In general, the number 7 in 
the Bible represents “divine perfection, totality or completion and is 
mentioned at least 490 times.”19

Conclusions

In this paper, systems of elements are considered that are interdepen-
dent, mutually interact, and compensate for the movement of other 
elements. The forces that cause such interaction can be gravitational, 
electromagnetic, mechanical, or mental.

It was shown above that there is a limit to the number of elements 
that can work together interdependently without breakdown in their 
cooperative effort. Every system, including the human body, consists of 
a hierarchy of parts, subparts, and still smaller parts. It should always 
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be possible to identify a part when it becomes inconsistent with the 
workings of the other parts. As the system ages, some of its parts 
weaken more than the other parts, and if it is very large, the system 
would have difficulty identifying the defective parts. It has been demon-
strated that 7 or 8 is a limit on the number of interdependent elements 
working together in a module of a system.
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